Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamics and spectra of composition operators on the Schwartz space (1707.03627v1)

Published 12 Jul 2017 in math.FA

Abstract: In this paper we study the dynamics of the composition operators defined in the Schwartz space $\mathcal{S}(\mathbb{R})$ of rapidly decreasing functions. We prove that such an operator is never supercyclic and, for monotonic symbols, it is power bounded only in trivial cases. For a polynomial symbol $\varphi$ of degree greater than one we show that the operator is mean ergodic if and only if it is power bounded and this is the case when $\varphi$ has even degree and lacks fixed points. We also discuss the spectrum of composition operators.

Summary

We haven't generated a summary for this paper yet.