Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Stochastic Approximation for Multi-stage Stochastic Optimization (1707.03324v2)

Published 11 Jul 2017 in math.OC, cs.CC, cs.LG, and stat.ML

Abstract: In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solving these types of stochastic optimization problems. We show that DSA can achieve an optimal ${\cal O}(1/\epsilon4)$ rate of convergence in terms of the total number of required scenarios when applied to a three-stage stochastic optimization problem. We further show that this rate of convergence can be improved to ${\cal O}(1/\epsilon2)$ when the objective function is strongly convex. We also discuss variants of DSA for solving more general multi-stage stochastic optimization problems with the number of stages $T > 3$. The developed DSA algorithms only need to go through the scenario tree once in order to compute an $\epsilon$-solution of the multi-stage stochastic optimization problem. As a result, the memory required by DSA only grows linearly with respect to the number of stages. To the best of our knowledge, this is the first time that stochastic approximation type methods are generalized for multi-stage stochastic optimization with $T \ge 3$.

Citations (11)

Summary

We haven't generated a summary for this paper yet.