Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Analytics of Movement Pattern Based on Time-Spatial Data: A Neural Net Approach (1707.02554v1)

Published 9 Jul 2017 in cs.CV

Abstract: Time-Spatial data plays a crucial role for different fields such as traffic management. These data can be collected via devices such as surveillance sensors or tracking systems. However, how to efficiently an- alyze and visualize these data to capture essential embedded pattern information is becoming a big challenge today. Classic visualization ap- proaches focus on revealing 2D and 3D spatial information and modeling statistical test. Those methods would easily fail when data become mas- sive. Recent attempts concern on how to simply cluster data and perform prediction with time-oriented information. However, those approaches could still be further enhanced as they also have limitations for han- dling massive clusters and labels. In this paper, we propose a visualiza- tion methodology for mobility data using artificial neural net techniques. This method aggregates three main parts that are Back-end Data Model, Neural Net Algorithm including clustering method Self-Organizing Map (SOM) and prediction approach Recurrent Neural Net (RNN) for ex- tracting the features and lastly a solid front-end that displays the results to users with an interactive system. SOM is able to cluster the visiting patterns and detect the abnormal pattern. RNN can perform the predic- tion for time series analysis using its dynamic architecture. Furthermore, an interactive system will enable user to interpret the result with graph- ics, animation and 3D model for a close-loop feedback. This method can be particularly applied in two tasks that Commercial-based Promotion and abnormal traffic patterns detection.

Citations (4)

Summary

We haven't generated a summary for this paper yet.