Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Multilingual Named Entity Recognition with Wikipedia Entity Type Mapping (1707.02459v1)

Published 8 Jul 2017 in cs.CL, cs.AI, and cs.IR

Abstract: The state-of-the-art named entity recognition (NER) systems are statistical machine learning models that have strong generalization capability (i.e., can recognize unseen entities that do not appear in training data) based on lexical and contextual information. However, such a model could still make mistakes if its features favor a wrong entity type. In this paper, we utilize Wikipedia as an open knowledge base to improve multilingual NER systems. Central to our approach is the construction of high-accuracy, high-coverage multilingual Wikipedia entity type mappings. These mappings are built from weakly annotated data and can be extended to new languages with no human annotation or language-dependent knowledge involved. Based on these mappings, we develop several approaches to improve an NER system. We evaluate the performance of the approaches via experiments on NER systems trained for 6 languages. Experimental results show that the proposed approaches are effective in improving the accuracy of such systems on unseen entities, especially when a system is applied to a new domain or it is trained with little training data (up to 18.3 F1 score improvement).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jian Ni (22 papers)
  2. Radu Florian (54 papers)
Citations (32)