Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Virtual link and knot invariants from non-abelian Yang-Baxter 2-cocycle pairs (1707.02250v2)

Published 7 Jul 2017 in math.GT

Abstract: For a given $(X,S,\beta)$, where $S,\beta\colon X\times X\to X\times X$ are set theoretical solutions of Yang-Baxter equation with a compatibility condition, we define an invariant for virtual (or classical) knots/links using non commutative 2-cocycles pairs $(f,g)$ that generalizes the one defined in [FG2]. We also define, a group $U_{nc}{fg}=U_{nc}{fg}(X,S,\beta)$ and functions $\pi_f, \pi_g\colon X\times X\to U_{nc}{fg}(X)$ governing all 2-cocycles in $X$. We exhibit examples of computations achieved using GAP.

Summary

We haven't generated a summary for this paper yet.