Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some ergodic properties of metrics on hyperbolic groups (1707.02020v2)

Published 7 Jul 2017 in math.DS

Abstract: Let $\Gamma$ be a non-elementary Gromov-hyperbolic group, and $\partial \Gamma$ denote its Gromov boundary. We consider $\Gamma$-invariant proper $\delta$-hyperbolic, quasi-convex metric $d$ on $\Gamma$, and the associated Patterson-Sullivan measure class $[\nu]$ on $\partial{(2)}\Gamma$, and its square $[\nu\times\nu]$ on $\partial{(2)}\Gamma$ -- the space of distinct pairs of points on the boundary. We construct an analogue of a geodesic flow to study ergodicity properties of the $\Gamma$-actions on $(\partial\Gamma,\nu)$ and on $(\partial{(2)}\Gamma,[\nu\times\nu])$.

Summary

We haven't generated a summary for this paper yet.