Specht modules labelled by hook bipartitions I (1707.01851v2)
Abstract: Brundan, Kleshchev and Wang equip the Specht modules $S_{\lambda}$ over the cyclotomic Khovanov--Lauda--Rouquier algebra $\mathscr{H}n{\Lambda}$ with a homogeneous $\mathbb{Z}$-graded basis. In this paper we begin the study of graded Specht modules labelled by hook bipartitions $((n-m),(1m))$ in level $2$ of $\mathscr{H}_n{\Lambda}$, which are precisely the Hecke algebras of type B, with quantum characteristic at least three. We give an explicit description of the action of the Khovanov--Lauda--Rouquier algebra generators $\psi_1,\dots,\psi{n-1}$ on the basis elements of $S_{((n-m),(1m))}$. Introducing certain Specht module homomorphisms, we construct irreducible submodules of these Specht modules, and thereby completely determining the composition series of Specht modules labelled by hook bipartitions for $e\geqslant{3}$.