On topological cyclic homology
Abstract: Topological cyclic homology is a refinement of Connes--Tsygan's cyclic homology which was introduced by B\"okstedt--Hsiang--Madsen in 1993 as an approximation to algebraic $K$-theory. There is a trace map from algebraic $K$-theory to topological cyclic homology, and a theorem of Dundas--Goodwillie--McCarthy asserts that this induces an equivalence of relative theories for nilpotent immersions, which gives a way for computing $K$-theory in various situations. The construction of topological cyclic homology is based on genuine equivariant homotopy theory, the use of explicit point-set models, and the elaborate notion of a cyclotomic spectrum. The goal of this paper is to revisit this theory using only homotopy-invariant notions. In particular, we give a new construction of topological cyclic homology. This is based on a new definition of the $\infty$-category of cyclotomic spectra: We define a cyclotomic spectrum to be a spectrum $X$ with $S1$-action (in the most naive sense) together with $S1$-equivariant maps $\varphi_p: X\to X{tC_p}$ for all primes $p$. Here $X{tC_p}=\mathrm{cofib}(\mathrm{Nm}: X_{hC_p}\to X{hC_p})$ is the Tate construction. On bounded below spectra, we prove that this agrees with previous definitions. As a consequence, we obtain a new and simple formula for topological cyclic homology. In order to construct the maps $\varphi_p: X\to X{tC_p}$ in the example of topological Hochschild homology we introduce and study Tate diagonals for spectra and Frobenius homomorphisms of commutative ring spectra. In particular we prove a version of the Segal conjecture for the Tate diagonals and relate these Frobenius homomorphisms to power operations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.