Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Efficient Resource Allocation for Hybrid Services with Future Channel Gains (1707.01673v2)

Published 6 Jul 2017 in cs.IT and math.IT

Abstract: In this paper, we propose a framework to maximize energy efficiency (EE) of a system supporting real-time (RT) and non-real-time services by exploiting future average channel gains of mobile users, which change in the timescale of seconds and are reported predictable within a minute-long time window. To demonstrate the potential of improving EE by jointly optimizing resource allocation for both services by harnessing both future average channel gains and current instantaneous channel gains, we optimize a two-timescale policy with perfect prediction, by taking orthogonal frequency division multiple access system serving RT and video-on-demand (VoD) users as an example. Considering that fine-grained prediction for every user is with high cost, we propose a heuristic policy that only needs to predict the median of average channel gains of VoD users. Simulation results show that the optimal policy outperforms relevant counterparts, indicating the necessity of the joint optimization for both services and for two timescales. Besides, the heuristic policy performs closely to the optimal policy with perfect prediction while becomes superior with large prediction errors. This suggests that the EE gain over non-predictive policies can be captured with coarse-grained prediction.

Summary

We haven't generated a summary for this paper yet.