Papers
Topics
Authors
Recent
Search
2000 character limit reached

Particle MCMC with Poisson Resampling: Parallelization and Continuous Time Models

Published 6 Jul 2017 in stat.CO | (1707.01660v2)

Abstract: We introduce a new version of particle filter in which the number of "children" of a particle at a given time has a Poisson distribution. As a result, the number of particles is random and varies with time. An advantage of this scheme is that descendants of different particles can evolve independently. It makes easy to parallelize computations. Moreover, particle filter with Poisson resampling is readily adapted to the case when a hidden process is a continuous time, piecewise deterministic semi-Markov process. We show that the basic techniques of particle MCMC, namely particle independent Metropolis-Hastings, particle Gibbs Sampler and its version with ancestor sampling, work under our Poisson resampling scheme. Our version of particle Gibbs Sampler is uniformly ergodic under the same assumptions as its standard counterpart. We present simulation results which indicate that our algorithms can compete with the existing methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.