Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Estimation for Nonlinear Systems using Reproducing Kernel Hilbert Spaces (1707.01567v2)

Published 5 Jul 2017 in cs.SY

Abstract: This paper extends a conventional, general framework for online adaptive estimation problems for systems governed by unknown nonlinear ordinary differential equations. The central feature of the theory introduced in this paper represents the unknown function as a member of a reproducing kernel Hilbert space (RKHS) and defines a distributed parameter system (DPS) that governs state estimates and estimates of the unknown function. This paper 1) derives sufficient conditions for the existence and stability of the infinite dimensional online estimation problem, 2) derives existence and stability of finite dimensional approximations of the infinite dimensional approximations, and 3) determines sufficient conditions for the convergence of finite dimensional approximations to the infinite dimensional online estimates. A new condition for persistency of excitation in a RKHS in terms of its evaluation functionals is introduced in the paper that enables proof of convergence of the finite dimensional approximations of the unknown function in the RKHS. This paper studies two particular choices of the RKHS, those that are generated by exponential functions and those that are generated by multiscale kernels defined from a multiresolution analysis.

Citations (18)

Summary

We haven't generated a summary for this paper yet.