Papers
Topics
Authors
Recent
2000 character limit reached

A mathematical characterization of confidence as valid belief

Published 3 Jul 2017 in math.ST and stat.TH | (1707.00486v1)

Abstract: Confidence is a fundamental concept in statistics, but there is a tendency to misinterpret it as probability. In this paper, I argue that an intuitively and mathematically more appropriate interpretation of confidence is through belief/plausibility functions, in particular, those that satisfy a certain validity property. Given their close connection with confidence, it is natural to ask how a valid belief/plausibility function can be constructed directly. The inferential model (IM) framework provides such a construction, and here I prove a complete-class theorem stating that, for every nominal confidence region, there exists a valid IM whose plausibility regions are contained by the given confidence region. This characterization has implications for statistics understanding and communication, and highlights the importance of belief functions and the IM framework.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.