Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analytical and numerical results for American style of perpetual put options through transformation into nonlinear stationary Black-Scholes equations (1707.00356v1)

Published 2 Jul 2017 in q-fin.CP

Abstract: We analyze and calculate the early exercise boundary for a class of stationary generalized Black-Scholes equations in which the volatility function depends on the second derivative of the option price itself. A motivation for studying the nonlinear Black Scholes equation with a nonlinear volatility arises from option pricing models including, e.g., non-zero transaction costs, investors preferences, feedback and illiquid markets effects and risk from unprotected portfolio. We present a method how to transform the problem of American style of perpetual put options into a solution of an ordinary differential equation and implicit equation for the free boundary position. We finally present results of numerical approximation of the early exercise boundary, option price and their dependence on model parameters.

Summary

We haven't generated a summary for this paper yet.