Papers
Topics
Authors
Recent
Search
2000 character limit reached

Separability of diagonal symmetric states: a quadratic conic optimization problem

Published 28 Jun 2017 in quant-ph | (1706.09423v2)

Abstract: We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS) states. First, we show that separability in the case of DS in $Cd\otimes Cd$ (symmetric qudits) can be reformulated as a quadratic conic optimization problem. This connection allows us to exchange concepts and ideas between quantum information and this field of mathematics. For instance, copositive matrices can be understood as indecomposable entanglement witnesses for DS states. As a consequence, we show that positivity of the partial transposition (PPT) is sufficient and necessary for separability of DS states for $d \leq 4$. Furthermore, for $d \geq 5$, we provide analytic examples of PPT-entangled states. Second, we develop new sufficient separability conditions beyond the PPT criterion for bipartite DS states. Finally, we focus on $N$-partite DS qubits, where PPT is known to be necessary and sufficient for separability. In this case, we present a family of almost DS states that are PPT with respect to each partition but nevertheless entangled.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.