Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel-based Discretisation for Solving Matrix-Valued PDEs (1706.09360v1)

Published 28 Jun 2017 in math.NA

Abstract: In this paper, we discuss the solution of certain matrix-valued partial differential equations. Such PDEs arise, for example, when constructing a Riemannian contraction metric for a dynamical system given by an autonomous ODE. We develop and analyse a new meshfree discretisation scheme using kernel-based approximation spaces. However, since these approximation spaces have now to be matrix-valued, the kernels we need to use are fourth order tensors. We will review and extend recent results on even more general reproducing kernel Hilbert spaces. We will then apply this general theory to solve a matrix-valued PDE and derive error estimates for the approximate solution. The paper ends with a typical example from dynamical systems.

Summary

We haven't generated a summary for this paper yet.