A Phragmén-Lindelöf theorem via proximate orders, and the propagation of asymptotics
Abstract: We prove that, for asymptotically bounded holomorphic functions in a sector in $\mathbb{C}$, an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by A. Fruchard and C. Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragm\'en-Lindel\"of theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of E. Lindel\"of and G. Valiron.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.