Papers
Topics
Authors
Recent
2000 character limit reached

A Phragmén-Lindelöf theorem via proximate orders, and the propagation of asymptotics

Published 27 Jun 2017 in math.CV and math.CA | (1706.08804v1)

Abstract: We prove that, for asymptotically bounded holomorphic functions in a sector in $\mathbb{C}$, an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by A. Fruchard and C. Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragm\'en-Lindel\"of theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of E. Lindel\"of and G. Valiron.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.