Normes d'idéaux dans la tour cyclotomique et conjecture de Greenberg (1706.08784v3)
Abstract: Pre-print of a publication in "Annales math\'ematiques du Qu{\'e}bec". Let $k$ be a totally real number field and let $k_\infty$ be its cyclotomic $\mathbb{Z}p$-extension for $p$ totally split in $k$. This text completes our article entitled: "Approche $p$-adique de la conjecture de Greenberg pour les corps totalement r\'eels" (Annales Math\'ematiques Blaise Pascal 2017), by means of heuristics on the $p$-adic behavior of the norms, in $k_n/k$, of the ideals in $k\infty$ ; indeed, this conjecture (on the nullity of the invariants $\lambda$ et $\mu$ of Iwasawa) depends of images in the torsion group ${\mathcal T}_k$ of the Galois group of the maximal abelian $p$-ramified pro-$p$-extension of $k$, thus of Artin symbols in a finite extension $F/k$ obtained by Galois descent of ${\mathcal T}_k$. An assumption of distribution of these norms implies $\lambda=\mu=0$. Several statistics and numerical examples in the quadratic case confirm the probable exactness of such properties which constitute the fundamental obstruction for a proof of Greenberg's conjecture in the sole context of Iwasawa's theory.