Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on first-order spectra with binary relations (1706.08691v5)

Published 27 Jun 2017 in cs.LO

Abstract: The spectrum of a first-order sentence is the set of the cardinalities of its finite models. In this paper, we consider the spectra of sentences over binary relations that use at least three variables. We show that for every such sentence $\Phi$, there is a sentence $\Phi'$ that uses the same number of variables, but only one symmetric binary relation, such that its spectrum is linearly proportional to the spectrum of $\Phi$. Moreover, the models of $\Phi'$ are all bipartite graphs. As a corollary, we obtain that to settle Asser's conjecture, i.e., whether the class of spectra is closed under complement, it is sufficient to consider only sentences using only three variables whose models are restricted to undirected bipartite graphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.