Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forbidden branches in trees with minimal atom-bond connectivity index (1706.08680v1)

Published 27 Jun 2017 in cs.DM

Abstract: The atom-bond connectivity (ABC) index has been, in recent years, one of the most actively studied vertex-degree-based graph invariants in chemical graph theory. For a given graph $G$, the ABC index is defined as $\sum_{uv\in E}\sqrt{\frac{d(u) +d(v)-2}{d(u)d(v)}}$, where $d(u)$ is the degree of vertex $u$ in $G$ and $E(G)$ denotes the set of edges of $G$. In this paper we present some new structural properties of trees with a minimal ABC index (also refer to as a minimal-ABC tree), which is a step further towards understanding their complete characterization. We show that a minimal-ABC tree cannot simultaneously contain a $B_4$-branch and $B_1$ or $B_2$-branches.

Summary

We haven't generated a summary for this paper yet.