Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed compression through the lens of algorithmic information theory: a primer (1706.08468v1)

Published 26 Jun 2017 in cs.CC, cs.IT, and math.IT

Abstract: Distributed compression is the task of compressing correlated data by several parties, each one possessing one piece of data and acting separately. The classical Slepian-Wolf theorem (D. Slepian, J. K. Wolf, IEEE Transactions on Inf. Theory, 1973) shows that if data is generated by independent draws from a joint distribution, that is by a memoryless stochastic process, then distributed compression can achieve the same compression rates as centralized compression when the parties act together. Recently, the author (M. Zimand, STOC 2017) has obtained an analogue version of the Slepian-Wolf theorem in the framework of Algorithmic Information Theory (also known as Kolmogorov complexity). The advantage over the classical theorem, is that the AIT version works for individual strings, without any assumption regarding the generative process. The only requirement is that the parties know the complexity profile of the input strings, which is a simple quantitative measure of the data correlation. The goal of this paper is to present in an accessible form that omits some technical details the main ideas from the reference (M. Zimand, STOC 2017).

Citations (1)

Summary

We haven't generated a summary for this paper yet.