Papers
Topics
Authors
Recent
Search
2000 character limit reached

Invariant universality for quandles and fields

Published 25 Jun 2017 in math.LO | (1706.08142v2)

Abstract: We show that the embeddability relations for countable quandles and for countable fields of any given characteristic other than 2 are maximally complex in a strong sense: they are invariantly universal. This notion from the theory of Borel reducibility states that any analytic quasi-order on a standard Borel space essentially appears as the restriction of the embeddability relation to an isomorphism-invariant Borel set. As an intermediate step we show that the embeddability relation of countable quandles is a complete analytic quasi-order.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.