Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intrinsic Ultracontractivity of Non-local Dirichlet forms on Unbounded Open Sets (1706.08031v1)

Published 25 Jun 2017 in math.PR and math.FA

Abstract: In this paper we consider a large class of symmetric Markov processes $X=(X_t){t\ge0}$ on $\Rd$ generated by non-local Dirichlet forms, which include jump processes with small jumps of $\alpha$-stable-like type and with large jumps of super-exponential decay. Let $D\subset \Rd$ be an open (not necessarily bounded and connected) set, and $XD=(X_tD){t\ge0}$ be the killed process of $X$ on exiting $D$. We obtain explicit criterion for the compactness and the intrinsic ultracontractivity of the Dirichlet Markov semigroup $(P{D}t){t\ge0}$ of $XD$. When $D$ is a horn-shaped region, we further obtain two-sided estimates of ground state in terms of jumping kernel of $X$ and the reference function of the horn-shaped region $D$.

Summary

We haven't generated a summary for this paper yet.