Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subdifferentiable functions satisfy Lusin properties of class $C^1$ or $C^2$ (1706.07980v2)

Published 24 Jun 2017 in math.FA and math.AP

Abstract: Let $f:\mathbb{R}n\to\mathbb{R}$ be a function. Assume that for a measurable set $\Omega$ and almost every $x\in\Omega$ there exists a vector $\xi_x\in\mathbb{R}n$ such that $$\liminf_{h\to 0}\frac{f(x+h)-f(x)-\langle \xi_x, h\rangle}{|h|2}>-\infty.$$ Then we show that $f$ satisfies a Lusin-type property of order $2$ in $\Omega$, that is to say, for every $\varepsilon>0$ there exists a function $g\in C2(\mathbb{R}n)$ such that $\mathcal{L}{n}\left({x\in\Omega : f(x)\neq g(x)}\right)\leq\varepsilon$. In particular every function which has a nonempty proximal subdifferential almost everywhere also has the Lusin property of class $C2$. We also obtain a similar result (replacing $C2$ with $C1$) for the Fr\'echet subdifferential. Finally we provide some examples showing that this kind of results are no longer true for "Taylor subexpansions" of higher order.

Summary

We haven't generated a summary for this paper yet.