Papers
Topics
Authors
Recent
2000 character limit reached

On the origin of Phase Transitions in the absence of Symmetry-Breaking

Published 24 Jun 2017 in cond-mat.stat-mech | (1706.07950v2)

Abstract: In this paper we investigate the Hamiltonian dynamics of a lattice gauge model in three spatial dimension. Our model Hamiltonian is defined on the basis of a continuum version of a duality transformation of a three dimensional Ising model. The system so obtained undergoes a thermodynamic phase transition in the absence of symmetry-breaking. Besides the well known use of quantities like the Wilson loop we show how else the phase transition in such a kind of models can be detected. It is found that the first order phase transition undergone by this model is characterised according to an Ehrenfest-like classification of phase transitions applied to the configurational entropy. On the basis of the topological theory of phase transitions, it is discussed why the seemingly divergent behaviour of the third derivative of configurational entropy can be considered as the "shadow" of some suitable topological transition of certain submanifolds of configuration space.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.