Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global existence and scattering for a class of nonlinear fourth-order Schrödinger equation below the energy space (1706.07430v2)

Published 21 Jun 2017 in math.AP

Abstract: In this paper, we consider a class of nonlinear fourth-order Schr\"odinger equation, namely [ \left{ \begin{array}{rcl} i\partial_t u +\Delta2 u &=&-|u|{\nu-1} u, \quad 1+ \frac{8}{d}<\nu <1+\frac{8}{d-4},\ u(0)&=&u_0 \in H\gamma(\mathbb{R}d), \quad 5 \leq d \leq 11. \end{array} \right. ] Using the $I$-method combined with the interaction Morawetz inequality, we establish the global well-posedness and scattering in $H\gamma(\mathbb{R}d)$ with $\gamma(d,\nu)<\gamma<2$ for some value $\gamma(d,\nu)>0$.

Summary

We haven't generated a summary for this paper yet.