Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-adaptive smoothing for optimal-rate estimation of possibly non-regular parameters (1706.07408v2)

Published 22 Jun 2017 in math.ST, stat.ME, and stat.TH

Abstract: We consider nonparametric inference of finite dimensional, potentially non-pathwise differentiable target parameters. In a nonparametric model, some examples of such parameters that are always non pathwise differentiable target parameters include probability density functions at a point, or regression functions at a point. In causal inference, under appropriate causal assumptions, mean counterfactual outcomes can be pathwise differentiable or not, depending on the degree at which the positivity assumption holds. In this paper, given a potentially non-pathwise differentiable target parameter, we introduce a family of approximating parameters, that are pathwise differentiable. This family is indexed by a scalar. In kernel regression or density estimation for instance, a natural choice for such a family is obtained by kernel smoothing and is indexed by the smoothing level. For the counterfactual mean outcome, a possible approximating family is obtained through truncation of the propensity score, and the truncation level then plays the role of the index. We propose a method to data-adaptively select the index in the family, so as to optimize mean squared error. We prove an asymptotic normality result, which allows us to derive confidence intervals. Under some conditions, our estimator achieves an optimal mean squared error convergence rate. Confidence intervals are data-adaptive and have almost optimal width. A simulation study demonstrates the practical performance of our estimators for the inference of a causal dose-response curve at a given treatment dose.

Summary

We haven't generated a summary for this paper yet.