Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of a degenerate parabolic cross-diffusion system for ion transport (1706.07261v1)

Published 22 Jun 2017 in math.AP

Abstract: A cross-diffusion system describing ion transport through biological membranes or nanopores in a bounded domain with mixed Dirichlet-Neumann boundary conditions is analyzed. The ion concentrations solve strongly coupled diffusion equations with a drift term involving the electric potential which is coupled to the concentrations through a Poisson equation. The global-in-time existence of bounded weak solutions and the uniqueness of weak solutions under moderate regularity assumptions are shown. The main difficulties of the analysis are the cross-diffusion terms and the degeneracy of the diffusion matrix, preventing the use of standard tools. The proofs are based on the boundedness-by-entropy method, extended to nonhomogeneous boundary conditions, and the uniqueness technique of Gajewski. A finite-volume discretization in one space dimension illustrates the large-time behavior of the numerical solutions and shows that the equilibration rates may be very small.

Summary

We haven't generated a summary for this paper yet.