Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Determination of singular time-dependent coefficients for wave equations from full and partial data (1706.07212v1)

Published 22 Jun 2017 in math.AP

Abstract: We study the problem of determining uniquely a time-dependent singular potential $q$, appearing in the wave equation $\partial_t2u-\Delta_x u+q(t,x)u=0$ in $Q=(0,T)\times\Omega$ with $T>0$ and $\Omega$ a $ \mathcal C2$ bounded domain of $\mathbb Rn$, $n\geq2$. We start by considering the unique determination of some singular time-dependent coefficients from observations on $\partial Q$. Then, by weakening the singularities of the set of admissible coefficients, we manage to reduce the set of data that still guaranties unique recovery of such a coefficient. To our best knowledge, this paper is the first claiming unique determination of unbounded time-dependent coefficients, which is motivated by the problem of determining general nonlinear terms appearing in nonlinear wave equations.

Summary

We haven't generated a summary for this paper yet.