Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context Reasoning in Underwater Robots Using MEBN (1706.07204v1)

Published 22 Jun 2017 in cs.RO

Abstract: This paper presents ongoing research in the SWARMs project towards facilitating context awareness in underwater robots. In particular, the focus of this paper is put on the context reasoning part. The underwater environment introduces uncertainties in context data which lead to difficulties in the context reasoning phase. As probability is the best well-known formalism for computational scientific reasoning under uncertainties, the emerging and effective probabilistic reasoning method, namely, Multi-Entity Bayesian Network (MEBN), is explored for its feasibility to reason under uncertainties in the SWARMs project. A simple use case for oil spill monitoring is used to verify the usefulness of MEBN. The results show that the MEBN is a promising approach to reason about context in the presence of uncertainties in the underwater robot field.

Citations (9)

Summary

We haven't generated a summary for this paper yet.