Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Adaptive Huber Regression (1706.06991v2)

Published 21 Jun 2017 in math.ST, stat.ME, and stat.TH

Abstract: Big data can easily be contaminated by outliers or contain variables with heavy-tailed distributions, which makes many conventional methods inadequate. To address this challenge, we propose the adaptive Huber regression for robust estimation and inference. The key observation is that the robustification parameter should adapt to the sample size, dimension and moments for optimal tradeoff between bias and robustness. Our theoretical framework deals with heavy-tailed distributions with bounded $(1+\delta)$-th moment for any $\delta > 0$. We establish a sharp phase transition for robust estimation of regression parameters in both low and high dimensions: when $\delta \geq 1$, the estimator admits a sub-Gaussian-type deviation bound without sub-Gaussian assumptions on the data, while only a slower rate is available in the regime $0<\delta< 1$. Furthermore, this transition is smooth and optimal. In addition, we extend the methodology to allow both heavy-tailed predictors and observation noise. Simulation studies lend further support to the theory. In a genetic study of cancer cell lines that exhibit heavy-tailedness, the proposed methods are shown to be more robust and predictive.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.