Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class-specific image denoising using importance sampling (1706.06917v1)

Published 21 Jun 2017 in cs.CV

Abstract: In this paper, we propose a new image denoising method, tailored to specific classes of images, assuming that a dataset of clean images of the same class is available. Similarly to the non-local means (NLM) algorithm, the proposed method computes a weighted average of non-local patches, which we interpret under the importance sampling framework. This viewpoint introduces flexibility regarding the adopted priors, the noise statistics, and the computation of Bayesian estimates. The importance sampling viewpoint is exploited to approximate the minimum mean squared error (MMSE) patch estimates, using the true underlying prior on image patches. The estimates thus obtained converge to the true MMSE estimates, as the number of samples approaches infinity. Experimental results provide evidence that the proposed denoiser outperforms the state-of-the-art in the specific classes of face and text images.

Citations (8)

Summary

We haven't generated a summary for this paper yet.