A New Condition for the Concavity Method of Blow-up Solutions to p-Laplacian Parabolic Equations (1706.06893v1)
Abstract: In this paper, we consider an initial-boundary value problem of the p-Laplacian parabolic equations \begin{equation} \begin{cases} u_{t}\left(x,t\right)=\mbox{div}(|\nabla u\left(x,t\right)|{p-2}\nabla u(x,t))+f(u(x,t)), & \left(x,t\right)\in \Omega\times\left(0,+\infty\right), \newline u\left(x,t\right)=0, & \left(x,t\right)\in\partial \Omega\times\left[0,+\infty\right), \newline u\left(x,0\right)=u_{0}\geq0, & x\in\overline{\Omega}, \end{cases} \end{equation} where $p\geq2$ and $\Omega$ is a bounded domain of $\mathbb{R}{N}$ $(N\geq1)$ with smooth boundary $\partial\Omega$. The main contribution of this work is to introduce a new condition [ \mbox{$(C_{p})$$\hspace{1cm} \alpha \int_{0}{u}f(s)ds \leq uf(u)+\beta u{p}+\gamma,\,\,u>0$} ] for some $\alpha, \beta, \gamma>0$ with $0<\beta\leq\frac{\left(\alpha-p\right)\lambda_{1, p}}{p}$, where $\lambda_{1, p}$ is the first eigenvalue of p-Laplacian $\Delta_{p}$, and we use the concavity method to obtain the blow-up solutions to the above equations. In fact, it will be seen that the condition $(C_{p})$ improves the conditions ever known so far.