Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-objective Robust Strategy Synthesis for Interval Markov Decision Processes (1706.06875v2)

Published 21 Jun 2017 in cs.SY

Abstract: Interval Markov decision processes (IMDPs) generalise classical MDPs by having interval-valued transition probabilities. They provide a powerful modelling tool for probabilistic systems with an additional variation or uncertainty that prevents the knowledge of the exact transition probabilities. In this paper, we consider the problem of multi-objective robust strategy synthesis for interval MDPs, where the aim is to find a robust strategy that guarantees the satisfaction of multiple properties at the same time in face of the transition probability uncertainty. We first show that this problem is PSPACE-hard. Then, we provide a value iteration-based decision algorithm to approximate the Pareto set of achievable points. We finally demonstrate the practical effectiveness of our proposed approaches by applying them on several case studies using a prototypical tool.

Citations (26)

Summary

We haven't generated a summary for this paper yet.