Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-frame image super-resolution with fast upscaling technique (1706.06266v2)

Published 20 Jun 2017 in cs.CV

Abstract: Multi-frame image super-resolution (MISR) aims to fuse information in low-resolution (LR) image sequence to compose a high-resolution (HR) one, which is applied extensively in many areas recently. Different with single image super-resolution (SISR), sub-pixel transitions between multiple frames introduce additional information, attaching more significance to fusion operator to alleviate the ill-posedness of MISR. For reconstruction-based approaches, the inevitable projection of reconstruction errors from LR space to HR space is commonly tackled by an interpolation operator, however crude interpolation may not fit the natural image and generate annoying blurring artifacts, especially after fusion operator. In this paper, we propose an end-to-end fast upscaling technique to replace the interpolation operator, design upscaling filters in LR space for periodic sub-locations respectively and shuffle the filter results to derive the final reconstruction errors in HR space. The proposed fast upscaling technique not only reduce the computational complexity of the upscaling operation by utilizing shuffling operation to avoid complex operation in HR space, but also realize superior performance with fewer blurring artifacts. Extensive experimental results demonstrate the effectiveness and efficiency of the proposed technique, whilst, combining the proposed technique with bilateral total variation (BTV) regu-larization, the MISR approach outperforms state-of-the-art methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.