Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beta-Beta Bounds: Finite-Blocklength Analog of the Golden Formula (1706.05972v2)

Published 19 Jun 2017 in cs.IT and math.IT

Abstract: It is well known that the mutual information between two random variables can be expressed as the difference of two relative entropies that depend on an auxiliary distribution, a relation sometimes referred to as the golden formula. This paper is concerned with a finite-blocklength extension of this relation. This extension consists of two elements: 1) a finite-blocklength channel-coding converse bound by Polyanskiy and Verd\'{u} (2014), which involves the ratio of two Neyman-Pearson $\beta$ functions (beta-beta converse bound); and 2) a novel beta-beta channel-coding achievability bound, expressed again as the ratio of two Neyman-Pearson $\beta$ functions. To demonstrate the usefulness of this finite-blocklength extension of the golden formula, the beta-beta achievability and converse bounds are used to obtain a finite-blocklength extension of Verd\'{u}'s (2002) wideband-slope approximation. The proof parallels the derivation of the latter, with the beta-beta bounds used in place of the golden formula. The beta-beta (achievability) bound is also shown to be useful in cases where the capacity-achieving output distribution is not a product distribution due to, e.g., a cost constraint or structural constraints on the codebook, such as orthogonality or constant composition. As an example, the bound is used to characterize the channel dispersion of the additive exponential-noise channel and to obtain a finite-blocklength achievability bound (the tightest to date) for multiple-input multiple-output Rayleigh-fading channels with perfect channel state information at the receiver.

Citations (13)

Summary

We haven't generated a summary for this paper yet.