Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Twigraph: Discovering and Visualizing Influential Words between Twitter Profiles (1706.05361v2)

Published 16 Jun 2017 in cs.SI and cs.IR

Abstract: The social media craze is on an ever increasing spree, and people are connected with each other like never before, but these vast connections are visually unexplored. We propose a methodology Twigraph to explore the connections between persons using their Twitter profiles. First, we propose a hybrid approach of recommending social media profiles, articles, and advertisements to a user.The profiles are recommended based on the similarity score between the user profile, and profile under evaluation. The similarity between a set of profiles is investigated by finding the top influential words thus causing a high similarity through an Influence Term Metric for each word. Then, we group profiles of various domains such as politics, sports, and entertainment based on the similarity score through a novel clustering algorithm. The connectivity between profiles is envisaged using word graphs that help in finding the words that connect a set of profiles and the profiles that are connected to a word. Finally, we analyze the top influential words over a set of profiles through clustering by finding the similarity of that profiles enabling to break down a Twitter profile with a lot of followers to fine level word connections using word graphs. The proposed method was implemented on datasets comprising 1.1 M Tweets obtained from Twitter. Experimental results show that the resultant influential words were highly representative of the relationship between two profiles or a set of profiles

Citations (4)

Summary

We haven't generated a summary for this paper yet.