Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On M-ary Distributed Detection for Power Constraint Wireless Sensor Networks (1706.05101v2)

Published 15 Jun 2017 in cs.IT and math.IT

Abstract: We consider a wireless sensor network (WSN), consisting of several sensors and a fusion center (FC), which is tasked with solving an M-ary hypothesis testing problem. Sensors make M-ary decisions and transmit their digitally modulated decisions over orthogonal channels, which are subject to Rayleigh fading and noise, to the FC. Adopting Bayesian optimality criterion, we consider training and non-training based distributed detection systems and investigate the effect of imperfect channel state information (CSI) on the optimal maximum a posteriori probability (MAP) fusion rules and optimal power allocation between sensors, when the sum of training and data symbol transmit powers is fixed. We consider J-divergence criteria to do power allocation between sensors. The theoretical results show that J-divergence for coherent reception will be maximized if total training power be half of total power, however for non coherent reception, optimal training power which maximize J-divergence is zero. The simulated results also show that probability of error will be minimized if training power be half of total power for coherent reception and zero for non coherent reception.

Summary

We haven't generated a summary for this paper yet.