2000 character limit reached
Some generalizations of numerical radius on off-diagonal part of $2\times 2$ operator matrices (1706.05040v1)
Published 15 Jun 2017 in math.FA and math.OA
Abstract: We generalize several inequalities involving powers of the numerical radius for off-diagonal part of $2\times2$ operator matrices of the form $T=\left[\begin{array}{cc} 0&B, C&0 \end{array}\right]$, where $B, C$ are two operators. In particular, if $T=\left[\begin{array}{cc} 0&B, C&0 \end{array}\right]$, then we get \begin{align*} {1\over 2{{3\over2}(r-1)}}\max{ | \mu |, | \eta | } \leq w{r}(T)\leq \frac{1}{2{r+1}} \max{ | \mu |, | \eta | }, \end{align*} where $r\geq 2$ and $ \mu=|(C-B{})+i(C+B{})|{r}+|(B{}-C)+i(C+B{})|{r}$, $ \eta=|(B-C{})+i(B+C{})|{r}+|(C{}-B)+i(B+C{})|{r}$.