Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hankel matrix acting on spaces of analytic functions (1706.04079v1)

Published 12 Jun 2017 in math.CV

Abstract: If $\mu $ is a positive Borel measure on the interval $[0, 1)$ we let $\mathcal H_\mu $ be the Hankel matrix $\mathcal H_\mu =(\mu {n, k}){n,k\ge 0}$ with entries $\mu {n, k}=\mu _{n+k}$, where, for $n\,=\,0, 1, 2, \dots $, $\mu_n$ denotes the moment of order $n$ of $\mu $. This matrix induces formally the operator $$\mathcal{H}\mu (f)(z)= \sum_{n=0}{\infty}\left(\sum_{k=0}{\infty} \mu_{n,k}{a_k}\right)zn$$ on the space of all analytic functions $f(z)=\sum_{k=0}\infty a_kzk$, in the unit disc $\mathbb D $. This is a natural generalization of the classical Hilbert operator. In this paper we improve the results obtained in some papers concerning the action of the operators $H_\mu $ on Hardy spaces and on M\"obius invariant spaces.

Summary

We haven't generated a summary for this paper yet.