Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence analysis of belief propagation for pairwise linear Gaussian models (1706.04074v4)

Published 12 Jun 2017 in cs.LG and stat.ML

Abstract: Gaussian belief propagation (BP) has been widely used for distributed inference in large-scale networks such as the smart grid, sensor networks, and social networks, where local measurements/observations are scattered over a wide geographical area. One particular case is when two neighboring agents share a common observation. For example, to estimate voltage in the direct current (DC) power flow model, the current measurement over a power line is proportional to the voltage difference between two neighboring buses. When applying the Gaussian BP algorithm to this type of problem, the convergence condition remains an open issue. In this paper, we analyze the convergence properties of Gaussian BP for this pairwise linear Gaussian model. We show analytically that the updating information matrix converges at a geometric rate to a unique positive definite matrix with arbitrary positive semidefinite initial value and further provide the necessary and sufficient convergence condition for the belief mean vector to the optimal estimate.

Citations (10)

Summary

We haven't generated a summary for this paper yet.