Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Heston stochastic volatility model in Hilbert space (1706.03500v1)

Published 12 Jun 2017 in math.PR

Abstract: We extend the Heston stochastic volatility model to a Hilbert space framework. The tensor Heston stochastic variance process is defined as a tensor product of a Hilbert-valued Ornstein-Uhlenbeck process with itself. The volatility process is then defined by a Cholesky decomposition of the variance process. We define a Hilbert-valued Ornstein-Uhlenbeck process with Wiener noise perturbed by this stochastic volatility, and compute the characteristic functional and covariance operator of this process. This process is then applied to the modelling of forward curves in energy markets. Finally, we compute the dynamics of the tensor Heston volatility model when the generator is bounded, and study its projection down to the real line for comparison with the classical Heston dynamics.

Summary

We haven't generated a summary for this paper yet.