A New Condition for Blow-up Solutions to Discrete Semilinear Heat Equations on Networks (1706.03494v1)
Abstract: The purpose of this paper is to introduce a new condition [ \hbox{(C)$\hspace{1cm} \alpha \int_{0}{u}f(s)ds \leq uf(u)+\beta u{2}+\gamma,\,\,u>0$} ] for some $\alpha, \beta, \gamma>0$ with $0<\beta\leq\frac{\left(\alpha-2\right)\lambda_{0}}{2}$, where $\lambda_{0}$ is the first eigenvalue of discrete Laplacian $\Delta_{\omega}$, with which we obtain blow-up solutions to discrete semilinear heat equations \begin{equation*} \begin{cases} u_{t}\left(x,t\right)=\Delta_{\omega}u\left(x,t\right)+f(u(x,t)), & \left(x,t\right)\in S\times\left(0,+\infty\right),\ u\left(x,t\right)=0, & \left(x,t\right)\in\partial S\times\left[0,+\infty\right),\ u\left(x,0\right)=u_{0}\geq0(nontrivial), & x\in\overline{S} \end{cases} \end{equation*} on a discrete network $S$. In fact, it will be seen that the condition (C) improves the conditions known so far.