Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arithmetic properties of polynomials (1706.03433v1)

Published 12 Jun 2017 in math.NT

Abstract: In this paper, first, we prove that the Diophantine system [f(z)=f(x)+f(y)=f(u)-f(v)=f(p)f(q)] has infinitely many integer solutions for $f(X)=X(X+a)$ with nonzero integers $a\equiv 0,1,4\pmod{5}$. Second, we show that the above Diophantine system has an integer parametric solution for $f(X)=X(X+a)$ with nonzero integers $a$, if there are integers $m,n,k$ such that [\begin{cases} \begin{split} (n2-m2) (4mnk(k+a+1) + a(m2+2mn-n2)) &\equiv0\pmod{(m2+n2)2},\ (m2+2mn-n2) ((m2-2mn-n2)k(k+a+1) - 2amn) &\equiv0 \pmod{(m2+n2)2}, \end{split} \end{cases}] where $k\equiv0\pmod{4}$ when $a$ is even, and $k\equiv2\pmod{4}$ when $a$ is odd. Third, we get that the Diophantine system [f(z)=f(x)+f(y)=f(u)-f(v)=f(p)f(q)=\frac{f(r)}{f(s)}] has a five-parameter rational solution for $f(X)=X(X+a)$ with nonzero rational number $a$ and infinitely many nontrivial rational parametric solutions for $f(X)=X(X+a)(X+b)$ with nonzero integers $a,b$ and $a\neq b$. At last, we raise some related questions.

Summary

We haven't generated a summary for this paper yet.