Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trimming and Improving Skip-thought Vectors (1706.03148v1)

Published 9 Jun 2017 in cs.CL

Abstract: The skip-thought model has been proven to be effective at learning sentence representations and capturing sentence semantics. In this paper, we propose a suite of techniques to trim and improve it. First, we validate a hypothesis that, given a current sentence, inferring the previous and inferring the next sentence provide similar supervision power, therefore only one decoder for predicting the next sentence is preserved in our trimmed skip-thought model. Second, we present a connection layer between encoder and decoder to help the model to generalize better on semantic relatedness tasks. Third, we found that a good word embedding initialization is also essential for learning better sentence representations. We train our model unsupervised on a large corpus with contiguous sentences, and then evaluate the trained model on 7 supervised tasks, which includes semantic relatedness, paraphrase detection, and text classification benchmarks. We empirically show that, our proposed model is a faster, lighter-weight and equally powerful alternative to the original skip-thought model.

Citations (7)

Summary

We haven't generated a summary for this paper yet.