Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On powers of operators with spectrum in cantor sets and spectral synthesis (1706.02943v1)

Published 9 Jun 2017 in math.FA

Abstract: For $\xi \in \big( 0, \frac{1}{2} \big)$, let $E_{\xi}$ be the perfect symmetric set associated with $\xi$, that is $$E_{\xi} = \Big{ \exp \Big( 2i \pi (1-\xi) \sum_{n = 1}{+\infty} \epsilon_{n} \xi{n-1} \Big) : \, \epsilon_{n} = 0 \textrm{ or } 1 \quad (n \geq 1) \Big}$$ and $$b(\xi) = \frac{\log{\frac{1}{\xi}} - \log{2}}{2\log{\frac{1}{\xi}} - \log{2}}.$$ Let $q\geq 3$ be an integer and $s$ be a nonnegative real number. We show that any invertible operator $T$ on a Banach space with spectrum contained in $E_{1/q}$ that satisfies \begin{eqnarray*} & & \big| T{n} \big| = O \big( n{s} \big), \,n \rightarrow +\infty \ & \textrm{and} & \big| T{-n} \big| = O \big( e{n{\beta}} \big), \, n \rightarrow +\infty \textrm{ for some } \beta < b(1/q),\end{eqnarray*} also satisfies the stronger property $\big| T{-n} \big| = O \big( n{s} \big), \, n \rightarrow +\infty.$ We also show that this result is false for $E_\xi$ when $1/\xi$ is not a Pisot number and that the constant $b(1/q)$ is sharp. As a consequence we prove that, if $\omega$ is a submulticative weight such that $\omega(n)=(1+n)s, \, (n \geq 0)$ and $C{-1} (1+|n|)s \leq \omega(-n) \leq C e{n{\beta}},\, (n\geq 0)$, for some constants $C>0$ and $\beta < b( 1/q),$ then $E_{1/q}$ satisfies spectral synthesis in the Beurling algebra of all continuous functions $f$ on the unit circle $\mathbb{T}$ such that $\sum_{n = -\infty}{+\infty} | \widehat{f}(n) | \omega (n) < +\infty$.

Summary

We haven't generated a summary for this paper yet.