Sharp Criteria of Scattering for the Fractional NLS (1706.02549v1)
Abstract: In this paper, the sharp threshold of scattering for the fractional nonlinear Schr\"{o}dinger equation in the $L2$-supercritical case is obtained, i.e., if $1+\frac{4s}{N}<p\<1+\frac{4s}{N-2s}$, and $$ M[u_{0}]^{\frac{s-s_c}{s_c}}E[u_{0}]<M[Q]^{\frac{s-s_c}{s_c}}E[Q], \ M[u_{0}]^{\frac{s-s_c}{s_c}}\| u_{0}\|^2_{\dot H^s}<M[Q]^{\frac{s-s_c}{s_c}}\| Q\|^2_{\dot H^s}$$ then the solution $u(t)$ is globally well-posed and scatters. This condition is sharp in the sense that if $1+\frac{4s}{N}<p\<1+\frac{4s}{N-2s}$ and $$ M[u_{0}]^{\frac{s-s_c}{s_c}}E[u_{0}]<M[Q]^{\frac{s-s_c}{s_c}}E[Q], \ M[u_{0}]^{\frac{s-s_c}{s_c}}\| u_{0}\|^2_{\dot H^s}>M[Q]{\frac{s-s_c}{s_c}}| Q|2_{\dot Hs},$$ then the corresponding solution $u(t)$ blows up in finite time, according to Boulenger, Himmelsbach, and Lenzmann's results in [2].