Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative-Discriminative Variational Model for Visual Recognition (1706.02295v1)

Published 7 Jun 2017 in cs.LG

Abstract: The paradigm shift from shallow classifiers with hand-crafted features to end-to-end trainable deep learning models has shown significant improvements on supervised learning tasks. Despite the promising power of deep neural networks (DNN), how to alleviate overfitting during training has been a research topic of interest. In this paper, we present a Generative-Discriminative Variational Model (GDVM) for visual classification, in which we introduce a latent variable inferred from inputs for exhibiting generative abilities towards prediction. In other words, our GDVM casts the supervised learning task as a generative learning process, with data discrimination to be jointly exploited for improved classification. In our experiments, we consider the tasks of multi-class classification, multi-label classification, and zero-shot learning. We show that our GDVM performs favorably against the baselines or recent generative DNN models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.