Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Represent Mechanics via Long-term Extrapolation and Interpolation (1706.02179v2)

Published 6 Jun 2017 in cs.CV and cs.AI

Abstract: While the basic laws of Newtonian mechanics are well understood, explaining a physical scenario still requires manually modeling the problem with suitable equations and associated parameters. In order to adopt such models for artificial intelligence, researchers have handcrafted the relevant states, and then used neural networks to learn the state transitions using simulation runs as training data. Unfortunately, such approaches can be unsuitable for modeling complex real-world scenarios, where manually authoring relevant state spaces tend to be challenging. In this work, we investigate if neural networks can implicitly learn physical states of real-world mechanical processes only based on visual data, and thus enable long-term physical extrapolation. We develop a recurrent neural network architecture for this task and also characterize resultant uncertainties in the form of evolving variance estimates. We evaluate our setup to extrapolate motion of a rolling ball on bowl of varying shape and orientation using only images as input, and report competitive results with approaches that assume access to internal physics models and parameters.

Citations (7)

Summary

We haven't generated a summary for this paper yet.