Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation of fracture energies with $p$-growth via piecewise affine finite elements (1706.01735v2)

Published 6 Jun 2017 in math.AP

Abstract: The modeling of fracture problems within geometrically linear elasticity is often based on the space of generalized functions of bounded deformation $GSBDp(\Omega)$, $p\in(1,\infty)$, their treatment is however hindered by the very low regularity of those functions and by the lack of appropriate density results. We construct here an approximation of $GSBDp$ functions, for $p\in(1,\infty)$, with functions which are Lipschitz continuous away from a jump set which is a finite union of closed subsets of $C1$ hypersurfaces. The strains of the approximating functions converge strongly in $Lp$ to the strain of the target, and the area of their jump sets converge to the area of the target. The key idea is to use piecewise affine functions on a suitable grid, which is obtained via the Freudhental partition of a cubic grid.

Summary

We haven't generated a summary for this paper yet.