Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fatou components and singularities of meromorphic functions (1706.01732v1)

Published 6 Jun 2017 in math.DS

Abstract: We prove several results concerning the relative position of points in the postsingular set $P(f)$ of a meromorphic map $f$ and the boundary of a Baker domain or the successive iterates of a wandering component. For Baker domains we answer a question of Mihaljevi\'c-Brandt and Rempe-Gillen. For wandering domains we show that if the iterates $U_n$ of such a domain have uniformly bounded diameter, then there exists a sequence of postsingular values $p_n$ such that ${\rm dist}(p_n,\partial U_n)\to 0$ as $n\to \infty$. We also prove that if $U_n \cap P(f)=\emptyset$ and the postsingular set of $f$ lies at a positive distance from the Julia set (in $\mathbb C$) then any sequence of iterates of wandering domains must contain arbitrarily large disks. This allows to exclude the existence of wandering domains for some meromorphic maps with infinitely many poles and unbounded set of singular values.

Summary

We haven't generated a summary for this paper yet.